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Abstract: Drawing inspiration from natural selection and genetic principles, genetic 
algorithms serve as heuristic global optimization tools. They excel in tackling intricate 
optimization and simulation challenges that conventional methods struggle to solve. 
While genetic algorithms traditionally align more with RNA concepts, this paper 
introduces a DNA-inspired adaptation of these algorithms. The study validates this 
modification through programmatic implementation, leveraging the openGA open-
source library, and assesses its efficacy using established optimization benchmark 
functions. The C/C++ source code is executed on a mobile device running the 
postmarketOS Linux distribution. 
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1. Introduction 
The basic idea behind genetic algorithms is to mimic the process of natural 
selection and reproduction to generate a population of potential solutions to a 
problem. The calculation starts with a random population of candidate solutions 
and then applies operators such as selection, crossover, and mutation (Lambora et 
al., 2019) to create new generations of candidate solutions. 
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1.1. Selection in Genetic Algorithms 
During the selection phase, the emphasis lies in favoring solutions that address the 
problem, a pivotal aspect within genetic algorithms. As outlined by Miller and 
Goldberg in 1996, this process involves choosing the most adept individuals 
within a population to serve as parents for the subsequent generation. The 
selection operator's pivotal function is to determine which individuals contribute 
genetic material for the next stage, significantly influencing the algorithm's 
efficacy and performance. Genetic algorithms employ various selection methods, 
each presenting distinct advantages and drawbacks. The primary ones include: 

• Roulette Wheel Selection: This method apportions selection 
probabilities to individuals based on their fitness levels. The likelihood 
of an individual being chosen is directly proportional to their fitness, 
with the sum of probabilities across the population totaling one. Higher 
fitness confers a greater chance of being chosen as a parent for the next 
generation. 

• Tournament Selection: This approach randomly picks a set number of 
individuals from the population, selecting the most fit among them as 
the parent for the subsequent generation. The tournament size is 
typically small, ensuring a higher likelihood of choosing the most 
suitable individuals. 

• Rank Selection: This method ranks individuals according to their 
fitness, assigning the top-ranking individual a rank of one. Selection 
probability hinges on an individual's rank, favoring those with higher 
ranks. 

The selection operator's significance is underscored by its role in recognizing 
and perpetuating the best solutions within the population, progressively enhancing 
the overall fitness over time. The genetic algorithm efficiently converges towards 
an optimal solution by opting for the fittest individuals as parents for the next 
generation. However, achieving a balance between selection pressure and genetic 
diversity is crucial to ensure a smooth convergence toward a solution that might 
not be optimal but is nonetheless highly effective. 

1.2. Crossover in Genetic Algorithms 
During the crossover phase, multiple solutions converge to form a fresh solution—
a pivotal process within genetic algorithms that mirrors the reproductive 
mechanism seen in biological organisms. This step involves interchanging genetic 
material between two parental entities to generate offspring imbued with a blend 
of their characteristics. The primary goal of the crossover operator is to augment 
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the population's genetic diversity, fostering novel solutions potentially better 
suited for the problem at hand. 

The core concept underlying the crossover operator is amalgamating genetic 
content from two parents to spawn one or more offspring. Typically, this operator 
is employed based on a probability known as the crossover rate, dictating the 
likelihood of performing a crossover between a given pair of parents. Genetic 
algorithms employ diverse crossover operators (Umbarkar & Sheth, 2015), 
including: 

• One-Point Crossover: This operator designates a single point along the 
parents' chromosomes and exchanges genetic material on either side 
of that point, resulting in two new offspring. 

• Two-Point Crossover: Two points along the parents' chromosomes are 
chosen to swap genetic material, generating two fresh offspring. 

• Uniform Crossover: Genetic material from both parents is randomly 
selected and exchanged to produce two new offspring. 

The selection of a specific crossover operator hinges on the problem's nature 
and the population's characteristics undergoing evolution. Generally, crossover 
amalgamates favorable traits from both parents while minimizing unfavorable 
ones. However, it can introduce novel genetic material that might need to exhibit 
superior fitness compared to the original. 

A potential challenge associated with the crossover operator is premature 
convergence, where the algorithm swiftly converges towards a sub-optimal 
solution. Maintaining a balance between crossover and other genetic operators –
like mutation – is crucial to address this risk. Controlling the crossover rate 
ensures sustained genetic diversity throughout the evolutionary process, thus 
preventing the algorithm from getting trapped in local optima, which are sub-
optimal solutions for the problem. 

Random alterations are introduced to solutions in the mutation phase, 
injecting diversity into the population. This element is fundamental within genetic 
algorithms, instigating slight, random changes to an individual's genetic makeup 
within a population. The mutation operator serves two primary purposes: 
upholding genetic diversity among individuals and preventing the algorithm from 
stagnating within local optima – sub-optimal solutions for the problem being 
addressed. 

1.3. Mutation in Genetic Algorithms 
The mutation operator, as described by Greenwell et al. in 1995, is activated based 
on a probability known as the mutation rate, determining the likelihood of a gene 
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within an individual undergoing mutation. Typically set at a low percentage: 1% 
or 5% – this rate ensures only a tiny population undergoes mutation at any given 
instance. Various mutation operators exist within genetic algorithms, 
encompassing: 

• Bit Flip Mutation: Alters a single bit in an individual's chromosome 
representation, toggling the gene's value between 0 and 1. 

• Gaussian Mutation: Introduces minute random fluctuations to a gene's 
value, determined by a Gaussian distribution centered around 0, often 
with a slight standard deviation. 

• Swap Mutation: Interchanges values between two genes in an 
individual's chromosome, creating fresh trait combinations that might 
prove advantageous. 

The selection of a mutation operator hinges on the problem's nature and the 
evolving population's characteristics. Generally, mutation sustains genetic 
diversity by introducing new genetic material that is potentially beneficial in 
problem-solving. However, excessive mutation can lower overall population 
fitness, necessitating a balanced use of mutation alongside other genetic operators, 
such as crossover. This equilibrium ensures that the genetic algorithm efficiently 
converges toward an optimal solution while preserving diversity. 

Over successive iterations, the population progresses toward superior 
solutions as these operators iteratively generate new candidate solutions. Genetic 
algorithms find application across diverse domains, from engineering 
optimization to game-playing and machine learning challenges. 

1.4. Biological Genetics 
RNA, or ribonucleic acid, transfers genetic information within living organisms. 
Similarly, genetic algorithms utilize a candidate solution population as a genetic 
code, conveying potential problem-solving information akin to RNA's 
transmission from DNA to ribosomes. Like RNA, these algorithms employ 
selective pressure and random mutation to generate diverse candidate solution 
populations, assessed based on their problem-solving fitness. The progression of 
these populations mirrors the evolutionary process of genetic information in living 
organisms, where the most adept solutions endure and proliferate while weaker 
ones diminish. The heuristics within genetic algorithms simulate real-world 
evolutionary processes. 

This study focuses on pairing single genetic chromosomes to mimic DNA 
structure, where each candidate solution possesses its complementary counterpart, 
creating complementary pairs. 
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The paper's subsequent sections are structured as follows: the second section 
outlines the conceptual framework, the third section details the practical 
implementation via a C/C++ program, the fourth section delves into the 
experimental aspects and their outcomes, and finally, the last section provides 
conclusions and suggests avenues for further research. 

2. DNA Encoding 
Genetic algorithms, widely recognized for their population of chromosomes (or 
individuals), simulate the RNA structure in biology. Although binary encoding 
remains prevalent, it might not suit every optimization or simulation challenge 
universally. Real number encoding often proves more effective for problems 
involving real numbers like Rastrigin, Sphere, Rosenbrock, and Styblinski-Tang 
functions. Real number encoding directly represents the problem domain, using 
chromosome genes to convey real values instead of binary ones. This approach 
facilitates quicker convergence and enhanced solutions, particularly for 
continuous variable problems. 

Diverse methods exist for real number encodings, such as floating-point or 
Gray encoding. Floating-point encoding represents chromosome genes as 
floating-point numbers, while Gray encoding converts genes, portrayed as a 
sequence of binary digits, into real numbers via a specific formula. Extending the 
genetic algorithm analogy to paired DNA strands is feasible with double-stranded 
genetic algorithms (DSGAs). Each chromosome in the population has a 
complementary pair, akin to DNA base pairs. DSGAs treat chromosome pairs as 
single entities during selection, crossover, and mutation. 

Employing paired chromosomes in DSGAs presents advantages over 
traditional genetic algorithms. Paired chromosomes can facilitate more efficient 
search space exploration by providing complementary information. They can also 
better handle optimization problem constraints. However, DSGAs might be more 
computationally demanding due to maintaining complementary pairs and 
executing operations on pairs rather than individual chromosomes. 

An alternative proposition involves organizing chromosomes as binary twins 
with inverted bits, termed bit-string twin optimization. Each population 
chromosome consists of two twins, where one twin's bits are inverted to form the 
other. This approach leverages the versatility of binary encoding for any problem 
representation. 

Twin chromosomes share a single fitness value, calculated for each twin, 
preventing premature convergence to sub-optimal solutions. They contribute 
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complementary information about the search space and maintain diversity in the 
population, even if one twin's fitness significantly lags. 

However, employing twin chromosomes may incur additional computational 
costs, requiring the inversion operation for each bit. Moreover, this method may 
not be optimal for problems unsuitable for binary encoding. 

3. Technical Implementation 
The C/C++ programming languages are frequently utilized in practical 
simulations involving genetic algorithms, offering a direct approach to 
interpreting double numbers as binary bytes. In C/C++, a double variable is 
typically depicted as a 64-bit binary value, with the bits arranged into distinct 
sections representing the number's sign, exponent, and mantissa. 

To manipulate the binary representation of a double variable in C/C++, one 
can take the address of the double variable and assign it to an unsigned long 
pointer. This facilitates the treatment of the bits within the double variable as 
unsigned integer numbers, which can be manipulated using bit-wise operators like 
AND, OR, XOR, and bit shifting – contrary to what was mentioned in (Yordzhev, 
2012). 

For instance, if there is a need to represent a binary string using a double 
variable “𝑥𝑥” the following C/C++ code can accomplish this: 

unsigned long long *p = reinterpret_cast<unsigned long 
long*>(&x); 

unsigned long long bits = *p; 

The `reinterpret_cast` operator converts the address of the “𝑥𝑥” 
variable into an unsigned long pointer, storing the binary representation of “𝑥𝑥” in 
the “bits” variable as an unsigned integer. 

Once the binary representation of double variables is obtained, they can be 
employed as chromosomes within a genetic algorithm's population. Standard 
genetic algorithm operations such as selection, crossover, mutation, and 
evaluation can then be applied. 

The openGA library, an open-source genetic algorithm library developed in 
C/C++ (Mohammadi et al., 2017), is a popular choice for implementing genetic 
algorithms. It offers an array of features enabling customization of the algorithm's 
behavior. 

Featuring a modular architecture, the openGA library allows users to choose 
different components for various parts of the genetic algorithm – selection, 
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crossover, mutation, and fitness evaluation. This modularity fosters easy 
experimentation with different settings to identify the optimal configuration for a 
specific optimization problem. 

The library encompasses genetic operators like selection, crossover, and 
mutation. It also supports binary and real number encoding, making it adaptable 
for simulations and optimizations across diverse problem domains. Its cross-
platform nature ensures usability across operating systems such as Windows, 
Linux, and macOS, allowing users to execute genetic algorithm simulations on 
varied hardware platforms. 

Overall, openGA enjoys popularity as a valuable genetic algorithm library 
for implementing optimization problems. Its modular design and support for 
different encoding types render it flexible and customizable, while its portability 
facilitates easy deployment across various hardware platforms. 

For benchmark functions, real numbers serve as the encoding, but the 
implementation of mutation occurs using binary data. The crossover remains 
within the realm of real numbers. Binary twins are represented within a single 
array of double values, with the first half signifying the first twin and the second 
half denoting the second twin. Initially, binary twins are formed as bit-inverse 
complements. The paired complement undergoes evaluation individually, and the 
better fitness among both twins is considered. 

4. Experiments & Results 
The function proposed in (Balabanov, 2020) serves as a benchmark in 
experimental simulations. Its analytical form, with '𝑛𝑛' denoting the dimension of 
decision variable space and summations reaching their upper limits, is detailed. 

     𝑓𝑓(𝑥𝑥) = 𝑛𝑛 + ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 + ∑ sin (2𝜋𝜋𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1  (1) 

In the two-dimensional version used, the optimization region's surface 
resembles that depicted in Fig. 1, characterized by numerous flat regions and local 
optima, posing a significant challenge in locating the global optimum. 

The hardware employed for these simulations is the Samsung A3 (2015) 
running postmarketOS (White and Qin, 2022), operating on Linux samsung-a3 
6.0.2-msm8916 #1 SMP PREEMPT Sun Oct 23 21:35:55 UTC 2022 aarch64 
Linux. This choice of simulation platform is informed by prior research in mobile 
distributed computing (Issarny et al., 2004). 
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Fig. 1. A two-dimensional version 

 
The source code for these experimental simulations is available in 

(Balabanov, 2023), demonstrating smooth optimization convergence, as 
illustrated in Fig. 2. 

Despite the mobile device's comparative lower power (Satyanarayanan, 
1996) compared to workstations or servers, the optimization process proves 
efficient, yielding solutions proximal to the global optimum. This efficiency 
suggests practical applicability for solving real-world problems. 

 

 
Fig. 2. Convergence process 



21 

4. Conclusion 
Ultimately, adapting a DNA-inspired genetic algorithm for use on a mobile device 
offers the potential for enhanced problem-solving efficiency, optimizing solutions 
through evolutionary processes. This adaptation holds particular promise for 
resource-limited mobile devices, empowering them to execute complex tasks 
faster and more precisely. Future research could explore additional benchmark 
functions and examine various mobile hardware platforms to expand upon these 
findings. 
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